
Key Ideas and Architectures
in Deep Learning

Applications that (probably) use DL
Autonomous Driving

Scene understanding

/Segmentation

Applications that (probably) use DL
WordLens Prisma

Outline of today’s talk
Image Recognition

● LeNet - 1998
● AlexNet - 2012
● VGGNet - 2014
● GoogLeNet - 2014
● ResNet - 2015

Fun application using CNNs

● Image Style Transfer

Questions to ask about each architecture/ paper

Special Layers Non-Linearity

Loss function Weight-update rule

Train faster? Reduce parameters

Reduce Overfitting Help you visualize?

LeNet5 - 1998

LeNet5 - Specs
MNIST - 60,000 training, 10,000 testing

Input is 32x32 image

8 layers

60,000 parameters

Few hours to train on a laptop

Modified LeNet Architecture - Assignment 3

Conv ReLU Maxp
ool Conv ReLU Max

pool FC SoftmaxReLU

Input

LossLabels

Training

Forward pass

Backpropagation -
update weights

Modified LeNet Architecture - Assignment 3

Conv ReLU Maxp
ool Conv ReLU Max

pool FC SoftmaxReLU

Input

Output

Testing

Forward pass

Compare output
with labels

Modified LeNet - CONV Layer 1
Input - 28 x 28

Output - 6 feature maps - each 24 x 24

Convolution filter - 5 x 5 x 1 (convolution) + 1 (bias)

How many parameters in this layer?

Modified LeNet - CONV Layer 1
Input - 32 x 32

Output - 6 feature maps - each 28 x 28

Convolution filter - 5 x 5 x 1 (convolution) + 1 (bias)

How many parameters in this layer?

 (5x5x1+1)*6 = 156

Modified LeNet - Max-pooling layer
Decreases the spatial extent of the feature maps, makes it
translation-invariant

Input - 28 x 28 x 6 volume

Maxpooling with filter size 2 x2 a

And stride 2

Output - ?

Modified LeNet - Max-pooling layer
Decreases the spatial extent of the feature maps

Input - 28 x 28 x 6 volume

Maxpooling with filter size 2 x2 a

And stride 2

Output - 14 x 14 x 6 volume

LeNet5 - Key Ideas
Convolution - extract same features at different spatial locations with few
parameters

Spatial averaging - sub-sampling to reduce parameters (we use max-pooling)

Non-linearity - Sigmoid (but we’ll use ReLU)

Multi-layer perceptron in the final layers

Introduced the Conv -> Non-linearity -> Pooling unit

LeNet5 Evaluation
Misclassifications

Accuracy

>97%

What happened from 1998-2012?
Neural nets were in incubation

More and more data was available - cheaper digital cameras

And computing power became better - CPUs were becoming faster

GPUs became a general-purpose computing tool (2005-6)

Creation of structured datasets - ImageNet (ILSVRC) 2010 (super important!)

A word about datasets - Network inputs
ImageNet (We’ll talk about object classification)

CIFAR - Object Classification

Caltech - Pedestrian detection benchmark

KITTI - SLAM, Tracking etc.

Remember : Your algo is only as good as your data!

How are networks evaluated? - Network outputs
Top-5 error

Top-1 error

Accuracy

AlexNet - 2012
Won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Achieved a top-5 error rate of 15.4%, next best was 26.2%

AlexNet - Specs
ImageNet 1000 categories

1.2 million training images

50,000 validation images

150,000 testing images.

60M Parameters

Trained on two GTX 580 GPUs for five to six days.

AlexNet - Key Ideas
Used ReLU for the nonlinearity functions - f(x) = max(0,x) - made convergence
faster

Used data augmentation techniques

Implemented dropout to combat overfitting to the training data.

Trained the model using batch stochastic gradient descent

Used momentum and weight decay

Dropout
Dropout in Neural Networks

VGG Net - 2014
“Simple and deep”

Top-5 error rate of 7.3% on ImageNet

16 layer CNN - Best result - Conf. D

138 M parameters

Trained on 4 Nvidia Titan Black GPUs

for two to three weeks.

VGG Net - Key Ideas
The use of only 3x3 sized filters. Used multiple times = greater receptive fields.

Decrease in spatial dimensions and increase in depth deeper into the network

Used scale jittering as one data augmentation technique during training

Used ReLU layers after each conv layer and trained with batch gradient
descent

Reduced number of parameters - 3*(32) compared to 72

Conclusion - Small RFs, deep networks are good. :-)

GoogLeNet / Inception - 2014
Winner of ILSVRC 2014 with a top 5 error rate of 6.7% (4M parameters
compared to AlexNet’s 60M)

Trained on “a few high-end GPUs within a week”.

The Inception module

The Inception Module - A closer look

The Inception Module - A closer look

Inception module - Feature Map Concatenation

Inception Parameter count

Inception - Key Ideas
Used 9 Inception modules in the whole architecture

No use of fully connected layers! They use an average pool instead, to go from
a 7x7x1024 volume to a 1x1x1024 volume - Saves a huge number of
parameters.

Uses 12x fewer parameters than AlexNet.

During testing, multiple crops of the same image were created, fed into the
network, and the softmax probabilities were averaged to give us the final
solution.

Improved performance and efficiency through creatively stacking layers

Going deeper
Performance of ResNets versus plain-nets as depth is increased

Microsoft ResNet 2015
ResNet won ILSVRC 2015 with an incredible error rate of 3.6%
Humans usually hover around 5-10%
Trained on an 8 GPU machine for two to three weeks.

ResNet - A closer look

ResNets - Key Ideas
Residual learning

Interesting to note that after only the first 2 layers, the spatial size gets
compressed from an input volume of 224x224 to a 56x56 volume.

Tried a 1202-layer network, but got a lower test accuracy, presumably due to
overfitting.

Do I have to train from scratch every time?
If you have the data, the time and the power you should train from scratch

But since ConvNets can take weeks to train - people make their pre-trained
network weights available - Eg. Caffe Model Zoo

Do you have a lot of data and
compute power?

Degree of
similarity of
pretrained data
to your own

Low, Less Low, More

High, Less High, More

Train from
scratch

Train from
scratch

Initialize weights
only from lower
layers

Initialize/ Use
weights from a
higher layer

Do I have to train from scratch every time?
1. Use CNNs weights as initialization for your network - Assignment 3!

Fine-tune the weights using your data+ replace and retrain a classifier on
top

2. Use CNN as a fixed feature extractor - Build SVM / some other classifier
on top of it

A fun application - Style Transfer using ConvNets

Slide Credits and References
A brief overview of DL papers
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-P
apers-You-Need-To-Know-About.html

http://iamaaditya.github.io

A course on CNNs http://cs231n.github.io/

LeNet paper - http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Style transfer -
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_I
mage_Style_Transfer_CVPR_2016_paper.pdf

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://iamaaditya.github.io
http://iamaaditya.github.io
http://cs231n.github.io/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Slide Credits and References
Dropout (Recommended read)

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

ResNet Tutorial

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networ
ks_kaiminghe.pdf

Backpropagation Refresher (Useful read)

http://arunmallya.github.io/writeups/nn/backprop.html

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://arunmallya.github.io/writeups/nn/backprop.html
http://arunmallya.github.io/writeups/nn/backprop.html

Thank you!

