
Key Ideas and Architectures
in Deep Learning



Applications that (probably) use DL  
Autonomous Driving 

Scene understanding

/Segmentation 



Applications that (probably) use DL  
WordLens Prisma  



Outline of today’s talk 
Image Recognition 

● LeNet - 1998 
● AlexNet - 2012
● VGGNet - 2014
● GoogLeNet  - 2014
● ResNet - 2015

Fun application using CNNs

● Image Style Transfer





Questions to ask about each architecture/ paper

Special Layers Non-Linearity

Loss function Weight-update rule 

Train faster? Reduce parameters

Reduce Overfitting Help you visualize?



LeNet5 - 1998 



LeNet5 - Specs
MNIST  - 60,000 training, 10,000 testing

Input is 32x32 image 

8 layers 

60,000 parameters

Few hours to train on a laptop



Modified LeNet Architecture - Assignment 3

Conv ReLU Maxp
ool Conv ReLU Max

pool   FC SoftmaxReLU

Input

LossLabels

Training

Forward pass

Backpropagation - 
update weights



Modified LeNet Architecture - Assignment 3

Conv ReLU Maxp
ool Conv ReLU Max

pool   FC SoftmaxReLU

Input

Output 

Testing

Forward pass

Compare output 
with labels



Modified LeNet - CONV Layer 1
Input - 28 x 28

Output - 6 feature maps - each 24 x 24

Convolution filter - 5 x 5 x 1 (convolution) + 1 (bias)

How many parameters in this layer?



Modified LeNet - CONV Layer 1
Input - 32 x 32

Output - 6 feature maps - each 28 x 28  

Convolution filter - 5 x 5 x 1 (convolution) + 1 (bias)

How many parameters in this layer? 

 (5x5x1+1)*6 = 156 



Modified LeNet -  Max-pooling layer
Decreases the spatial extent of the feature maps, makes it 
translation-invariant

Input - 28 x 28 x 6 volume 

Maxpooling with filter size 2 x2 a

And stride 2

Output - ?



Modified LeNet -  Max-pooling layer
Decreases the spatial extent of the feature maps

Input - 28 x 28 x 6 volume 

Maxpooling with filter size 2 x2 a

And stride 2

Output - 14 x 14 x 6 volume 



LeNet5 - Key Ideas
Convolution - extract same features at different spatial locations with few 
parameters 

Spatial averaging - sub-sampling to reduce parameters (we use max-pooling)

Non-linearity - Sigmoid (but we’ll use ReLU)

Multi-layer perceptron in the final layers

Introduced the Conv -> Non-linearity -> Pooling unit



LeNet5 Evaluation 
Misclassifications

Accuracy 

>97%



What happened from 1998-2012?
Neural nets were in incubation

More and more data was available - cheaper digital cameras

And computing power became better - CPUs were becoming faster

GPUs became a general-purpose computing tool (2005-6)

Creation of structured datasets - ImageNet (ILSVRC) 2010 (super important!)



A word about datasets - Network inputs 
ImageNet (We’ll talk about object classification)

CIFAR - Object Classification

Caltech - Pedestrian detection benchmark

KITTI - SLAM, Tracking etc.

Remember : Your algo is only as good as your data! 



How are networks evaluated? - Network outputs
Top-5 error 

Top-1 error

Accuracy

 



AlexNet - 2012
Won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Achieved a top-5 error rate of 15.4%, next best was 26.2%



AlexNet - Specs
ImageNet 1000 categories 

1.2 million training images

50,000 validation images

150,000 testing images. 

60M Parameters

Trained on two GTX 580 GPUs for five to six days.



AlexNet - Key Ideas
Used ReLU for the nonlinearity functions - f(x) = max(0,x) - made convergence 
faster

Used data augmentation techniques 

Implemented dropout to combat overfitting to the training data.

Trained the model using batch stochastic gradient descent

Used momentum and weight decay



Dropout 
Dropout in Neural Networks 



VGG Net - 2014
“Simple and deep”

Top-5 error rate of 7.3% on ImageNet

16 layer CNN - Best result - Conf. D

138 M parameters

Trained on 4 Nvidia Titan Black GPUs 

for two to three weeks.



VGG Net - Key Ideas
The use of only 3x3 sized filters. Used multiple times = greater receptive fields.

Decrease in spatial dimensions and increase in depth deeper into the network

Used scale jittering as one data augmentation technique during training

Used ReLU layers after each conv layer and trained with batch gradient 
descent

Reduced number of parameters - 3*(32) compared to 72

Conclusion - Small RFs, deep networks are good. :-)



GoogLeNet / Inception - 2014
Winner of ILSVRC 2014 with a top 5 error rate of 6.7% (4M parameters 
compared to AlexNet’s 60M)

Trained on “a few high-end GPUs within a week”.



The Inception module 



The Inception Module - A closer look 



The Inception Module - A closer look



Inception module - Feature Map Concatenation 



Inception Parameter count 



Inception - Key Ideas 
Used 9 Inception modules in the whole architecture

No use of fully connected layers! They use an average pool instead, to go from 
a 7x7x1024 volume to a 1x1x1024 volume - Saves a huge number of 
parameters.

Uses 12x fewer parameters than AlexNet.

During testing, multiple crops of the same image were created, fed into the 
network, and the softmax probabilities were averaged to give us the final 
solution.

Improved performance and efficiency through creatively stacking layers



Going deeper 
Performance of ResNets versus plain-nets as depth is increased



Microsoft ResNet 2015
ResNet won ILSVRC 2015 with an incredible error rate of 3.6%
Humans usually hover around 5-10%
Trained on an 8 GPU machine for two to three weeks.



ResNet - A closer look



ResNets - Key Ideas
Residual learning

Interesting to note that after only the first 2 layers, the spatial size gets 
compressed from an input volume of 224x224 to a 56x56 volume.

Tried a 1202-layer network, but got a lower test accuracy, presumably due to 
overfitting.



Do I have to train from scratch every time? 
If you have the data, the time and the power you should train from scratch

But since ConvNets can take weeks to train - people make their pre-trained 
network weights  available - Eg. Caffe Model Zoo

  

Do you have a lot of data and 
compute power?

Degree of 
similarity of 
pretrained data 
to your own

Low, Less Low, More

High, Less High, More

Train from 
scratch

Train from 
scratch

Initialize weights 
only from lower 
layers 

Initialize/ Use 
weights from a 
higher layer



Do I have to train from scratch every time? 
1. Use CNNs weights as initialization for your network - Assignment 3!

Fine-tune the weights using your data+ replace and retrain a classifier on 
top

2. Use CNN as a fixed feature extractor - Build SVM / some other classifier 
on top of it



A fun application - Style Transfer using ConvNets





Slide Credits and References
A brief overview of DL papers 
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-P
apers-You-Need-To-Know-About.html

http://iamaaditya.github.io

A course on CNNs http://cs231n.github.io/

LeNet paper - http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Style transfer - 
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_I
mage_Style_Transfer_CVPR_2016_paper.pdf

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://iamaaditya.github.io
http://iamaaditya.github.io
http://cs231n.github.io/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf


Slide Credits and References
Dropout (Recommended read)

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

ResNet Tutorial

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networ
ks_kaiminghe.pdf

Backpropagation Refresher (Useful read)

http://arunmallya.github.io/writeups/nn/backprop.html

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
http://arunmallya.github.io/writeups/nn/backprop.html
http://arunmallya.github.io/writeups/nn/backprop.html


Thank you!


